EFFECT OF NANOCOMPOSITE PACKAGING CONTAINING AG AND ZNO ON REDUCING PASTEURIZATION TEMPERATURE OF ORANGE JUICE

ARYOU EMAMIFAR1,3, MAHDI KADIVAR2, MOHAMMAD SHAHEDI2 and SABIHE SOLIMANIAN-ZAD2

1College of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
2Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran

3Corresponding author.
TEL: 00988716620552;
FAX: 00988716620553;
EMAIL: emamip@ag.iut.ac.ir

Accepted for Publication February 26, 2011

ABSTRACT
Nanocomposite low-density polyethylene (LDPE) films containing Ag and ZnO nanoparticles were prepared by melt mixing process through the twin-screw extruder. Packages prepared from nanocomposite films were then filled with fresh orange juice, pasteurized (at 55 and 65°C for 16 s) and then stored at 4°C. Microbial stability, ascorbic acid (AA) content, browning index and color value of the juice were evaluated after 7, 28, 56, 84 and 112 days of being stored. The two-way interaction between heat treatment and packaging type on the characteristics of the orange juice was investigated. Consequently, application of LDPE nanocomposite packaging containing Ag markedly decreased the pasteurization temperature (65°C) of orange juice by 10°C. Moreover, the reduced degradation of AA was observed in orange juice, which was filled in nanocomposite packaging containing nano-ZnO.

PRACTICAL APPLICATIONS
Development of the novel technologies that offer reduced energy consumption and increased quality of fruit juice are of the interest in the food industry. Compared with pure packaging, antimicrobial nanocomposite packages containing Ag and ZnO as an alternative nonthermal-processing technology can reduce the temperature of orange juice light pasteurization while produce juice with higher quality.

INTRODUCTION
Orange juice is the predominant juice manufactured by the beverage-processing industry with a share of approximately 50% of the total fruit juice trade (Bull et al. 2004). Two type of pasteurization are traditionally applied to citrus juices: full pasteurization at 76–99°C for a few seconds to 1 min and light pasteurization at 66–75°C for 1–16 s (Alwazeer et al. 2002). Light pasteurization treatment is sufficient for inactive microorganisms and most enzymes provided that the product is chemically, microbiologically and visually stable (Sadler et al. 1992). It is suggested that reduced heat may conserve energy and time during heat processing (Shearer et al. 2002). Therefore, a great interest is increased in the development of novel nonthermal technologies that offer the advantages of low processing temperatures, low energy use, the retention of nutrients and sensory attributes, while still inactivating microorganisms to levels that do not pose a public health risk (Smith et al. 2002). This has formed the basis of the successful “hurdle technologies” that have fostered the development of new routes to food preservation around the world. Proper use of hurdles can appreciably lengthen shelf life of unpasteurized juices without unduly affecting quality (Bates et al. 2001). In accordance with this approach, rather than focusing solely on an antimicrobial method, several sublethal treatments could be used to achieve a safety level in the juice (Hodgins et al. 2002). However, sublethally injured cells are more susceptible to antimicrobial components (Kalchayanand et al. 1994). Nanotechnology as the new method in food packaging industry can potentially provide solutions to food packaging challenges, such as short shelf life (Joseph and Morrison 2006; Chaudhry et al. 2008). Antimicrobials active packaging based on metal nanocomposites, which are made by incorporating some metal nanoparticles (NPs) such as Ag, ZnO and CaO into...